# Welcome to the Fast Fourier Transform Program # We will first examine the function : # f(t) = cos( 6 * pi * t ) # How many seconds would you like to sample this function for (0 to quit)? # How many samples would you like to take per second? # The sampled values are # Time f(t) 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8 1 0 9 1 0 10 1 0 11 1 0 12 1 0 13 1 0 14 1 0 15 1 0 16 1 0 17 1 0 18 1 0 19 1 0 20 1 0 21 1 0 22 1 0 23 1 0 24 1 0 25 1 0 26 1 0 27 1 0 28 1 0 29 1 0 30 1 0 31 1 0 # Here is the spectrum of the sampled data 0 32 0 0.19634954084936 0 0 0.39269908169872 0 0 0.58904862254809 0 0 0.78539816339745 0 0 0.98174770424681 0 0 1.1780972450962 0 0 1.3744467859455 0 0 1.5707963267949 0 0 1.7671458676443 0 0 1.9634954084936 0 0 2.159844949343 0 0 2.3561944901923 0 0 2.5525440310417 0 0 2.7488935718911 0 0 2.9452431127404 0 0 3.1415926535898 0 0 3.3379421944392 0 0 3.5342917352885 0 0 3.7306412761379 0 0 3.9269908169872 0 0 4.1233403578366 0 0 4.319689898686 0 0 4.5160394395353 0 0 4.7123889803847 0 0 4.9087385212341 0 0 5.1050880620834 0 0 5.3014376029328 0 0 5.4977871437821 0 0 5.6941366846315 0 0 5.8904862254809 0 0 6.0868357663302 0 0 # Welcome to the Fast Fourier Transform Program # We will first examine the function : # f(t) = cos( 6 * pi * t ) # How many seconds would you like to sample this function for (0 to quit)? # How many samples would you like to take per second? # The sampled values are # Time f(t) 0 1 0 0.5 -1 0 1 1 0 1.5 -1 0 2 1 0 2.5 -1 0 3 1 0 3.5 -1 0 4 1 0 4.5 -1 0 5 1 0 5.5 -1 0 6 1 0 6.5 -1 0 7 1 0 7.5 -1 0 8 1 0 8.5 -1 0 9 1 0 9.5 -1 0 10 1 0 10.5 -1 0 11 1 0 11.5 -1 0 12 1 0 12.5 -1 0 13 1 0 13.5 -1 0 14 1 0 14.5 -1 0 15 1 0 15.5 -1 0 # Here is the spectrum of the sampled data 0 0 0 0.39269908169872 0 0 0.78539816339745 0 0 1.1780972450962 0 0 1.5707963267949 0 0 1.9634954084936 0 0 2.3561944901923 0 0 2.7488935718911 0 0 3.1415926535898 0 0 3.5342917352885 0 0 3.9269908169872 0 0 4.319689898686 0 0 4.7123889803847 0 0 5.1050880620834 0 0 5.4977871437821 0 0 5.8904862254809 0 0 6.2831853071796 32 0 6.6758843888783 0 0 7.068583470577 0 0 7.4612825522758 0 0 7.8539816339745 0 0 8.2466807156732 0 0 8.6393797973719 0 0 9.0320788790707 0 0 9.4247779607694 0 0 9.8174770424681 0 0 10.210176124167 0 0 10.602875205866 0 0 10.995574287564 0 0 11.388273369263 0 0 11.780972450962 0 0 12.17367153266 0 0 # Welcome to the Fast Fourier Transform Program # We will first examine the function : # f(t) = cos( 6 * pi * t ) # How many seconds would you like to sample this function for (0 to quit)? # How many samples would you like to take per second? # The sampled values are # Time f(t) 0 1 0 0.25 -1.8369095307336e-016 0 0.5 -1 0 0.75 5.5107285922007e-016 0 1 1 0 1.25 -2.694811604767e-015 0 1.5 -1 0 1.75 -4.9052016788675e-016 0 2 1 0 2.25 -3.4295754170605e-015 0 2.5 -1 0 2.75 2.4424364440667e-016 0 3 1 0 3.25 -4.1643392293539e-015 0 3.5 -1 0 3.75 9.790074567001e-016 0 4 1 0 4.25 -4.8991030416473e-015 0 4.5 -1 0 4.75 8.8191986265945e-015 0 5 1 0 5.25 1.4715605036603e-015 0 5.5 -1 0 5.75 2.448535081287e-015 0 6 1 0 6.25 -6.3686306662342e-015 0 6.5 -1 0 6.75 1.0288726251181e-014 0 7 1 0 7.25 -1.4208821836129e-014 0 7.5 -1 0 7.75 1.8128917421076e-014 0 # Here is the spectrum of the sampled data 0 6.4917689279742e-015 0 0.78539816339745 8.3377493850199e-015 -1.3254853072044e-014 1.5707963267949 1.3192991688311e-014 1.0011781210377e-014 2.3561944901923 1.9253502480823e-014 -7.9384124640267e-015 3.1415926535898 4.1564517939453e-015 2.512147933894e-015 3.9269908169872 2.6367751019997e-014 3.9454400264634e-015 4.7123889803847 2.5286140556762e-014 -1.760601907617e-014 5.4977871437821 2.5092287332414e-014 -2.1567687083891e-014 6.2831853071796 16 -7.5446593417183e-014 7.068583470577 -2.5092287332414e-014 -2.1567687083891e-014 7.8539816339745 -2.5286140556762e-014 -1.760601907617e-014 8.6393797973719 -2.6367751019997e-014 3.9454400264633e-015 9.4247779607694 -4.1564517939453e-015 2.512147933894e-015 10.210176124167 -1.9253502480823e-014 -7.9384124640268e-015 10.995574287564 -1.3192991688311e-014 1.0011781210377e-014 11.780972450962 -8.3377493850198e-015 -1.3254853072044e-014 12.566370614359 -6.4917689279742e-015 0 13.351768777757 -8.3377493850199e-015 1.3254853072044e-014 14.137166941154 -1.3192991688311e-014 -1.0011781210377e-014 14.922565104552 -1.9253502480823e-014 7.9384124640267e-015 15.707963267949 -4.1564517939453e-015 -2.512147933894e-015 16.493361431346 -2.6367751019997e-014 -3.9454400264634e-015 17.278759594744 -2.5286140556762e-014 1.760601907617e-014 18.064157758141 -2.5092287332414e-014 2.1567687083891e-014 18.849555921539 16 7.5446593417183e-014 19.634954084936 2.5092287332414e-014 2.1567687083891e-014 20.420352248334 2.5286140556762e-014 1.760601907617e-014 21.205750411731 2.6367751019997e-014 -3.9454400264633e-015 21.991148575129 4.1564517939453e-015 -2.512147933894e-015 22.776546738526 1.9253502480823e-014 7.9384124640268e-015 23.561944901923 1.3192991688311e-014 -1.0011781210377e-014 24.347343065321 8.3377493850198e-015 1.3254853072044e-014 # Welcome to the Fast Fourier Transform Program # We will first examine the function : # f(t) = cos( 6 * pi * t ) # How many seconds would you like to sample this function for (0 to quit)? # How many samples would you like to take per second? # The sampled values are # Time f(t) 0 1 0 0.125 -0.70710678118655 0 0.25 -1.8369095307336e-016 0 0.375 0.70710678118655 0 0.5 -1 0 0.625 0.70710678118655 0 0.75 5.5107285922007e-016 0 0.875 -0.70710678118655 0 1 1 0 1.125 -0.70710678118655 0 1.25 -2.694811604767e-015 0 1.375 0.70710678118655 0 1.5 -1 0 1.625 0.70710678118655 0 1.75 -4.9052016788675e-016 0 1.875 -0.70710678118655 0 2 1 0 2.125 -0.70710678118655 0 2.25 -3.4295754170605e-015 0 2.375 0.70710678118655 0 2.5 -1 0 2.625 0.70710678118655 0 2.75 2.4424364440667e-016 0 2.875 -0.70710678118655 0 3 1 0 3.125 -0.70710678118655 0 3.25 -4.1643392293539e-015 0 3.375 0.70710678118655 0 3.5 -1 0 3.625 0.70710678118654 0 3.75 9.790074567001e-016 0 3.875 -0.70710678118655 0 # Here is the spectrum of the sampled data 0 -1.1853148670915e-014 0 1.5707963267949 -7.4647438416077e-015 -7.8887304158713e-016 3.1415926535898 -7.2758561034744e-015 9.5453078755758e-015 4.7123889803847 -5.453723513809e-015 3.0289890832976e-015 6.2831853071796 -3.5527136788005e-015 2.8987229283572e-015 7.8539816339745 1.4552325546456e-015 9.5081355541532e-015 9.4247779607694 7.7668823255221e-016 4.4057046694675e-015 10.995574287564 -2.081833808221e-015 3.3520647533668e-015 12.566370614359 9.1886134118147e-015 -8.8817841970013e-016 14.137166941154 -5.7412207872435e-015 -1.2897793641636e-015 15.707963267949 -4.9331400264975e-015 -6.1859119832061e-016 17.278759594744 -7.2126392473345e-015 7.5854207662503e-015 18.849555921539 16 4.1510198056649e-014 20.420352248334 1.1211130206498e-014 1.1062742953947e-015 21.991148575129 1.143230789742e-014 4.5210120077878e-015 23.561944901923 1.5287798437072e-014 -5.4307171591175e-015 25.132741228718 -6.5240781527143e-015 0 26.703537555513 1.5287798437072e-014 5.4307171591176e-015 28.274333882308 1.143230789742e-014 -4.5210120077877e-015 29.845130209103 1.1211130206498e-014 -1.1062742953947e-015 31.415926535898 16 -2.6411164921747e-014 32.986722862693 -7.2126392473345e-015 -7.5854207662503e-015 34.557519189488 -4.9331400264975e-015 6.1859119832061e-016 36.128315516283 -5.7412207872435e-015 1.2897793641636e-015 37.699111843078 9.1886134118147e-015 8.8817841970013e-016 39.269908169872 -2.0818338082209e-015 -3.3520647533668e-015 40.840704496667 7.7668823255223e-016 -4.4057046694675e-015 42.411500823462 1.4552325546456e-015 -9.5081355541532e-015 43.982297150257 2.6645352591004e-015 -1.7997756063259e-014 45.553093477052 -5.453723513809e-015 -3.0289890832976e-015 47.123889803847 -7.2758561034744e-015 -9.5453078755759e-015 48.694686130642 -7.4647438416077e-015 7.8887304158708e-016 # Welcome to the Fast Fourier Transform Program # We will first examine the function : # f(t) = cos( 6 * pi * t ) # How many seconds would you like to sample this function for (0 to quit)? # How many samples would you like to take per second? # The sampled values are # Time f(t) 0 1 0 0.0625 0.38268343236509 0 0.125 -0.70710678118655 0 0.1875 -0.92387953251129 0 0.25 -1.8369095307336e-016 0 0.3125 0.92387953251129 0 0.375 0.70710678118655 0 0.4375 -0.38268343236509 0 0.5 -1 0 0.5625 -0.38268343236509 0 0.625 0.70710678118655 0 0.6875 0.92387953251129 0 0.75 5.5107285922007e-016 0 0.8125 -0.92387953251129 0 0.875 -0.70710678118655 0 0.9375 0.38268343236509 0 1 1 0 1.0625 0.38268343236509 0 1.125 -0.70710678118655 0 1.1875 -0.92387953251129 0 1.25 -2.694811604767e-015 0 1.3125 0.92387953251129 0 1.375 0.70710678118655 0 1.4375 -0.38268343236509 0 1.5 -1 0 1.5625 -0.38268343236509 0 1.625 0.70710678118655 0 1.6875 0.92387953251129 0 1.75 -4.9052016788675e-016 0 1.8125 -0.92387953251129 0 1.875 -0.70710678118655 0 1.9375 0.38268343236509 0 # Here is the spectrum of the sampled data 0 -7.1478196625452e-015 0 3.1415926535898 -4.0366941200258e-015 2.2580154136442e-015 6.2831853071796 -1.0928524728617e-015 -2.7982677184014e-015 9.4247779607694 -5.7260210049966e-015 2.9012209847015e-015 12.566370614359 -1.9708321324784e-015 -2.4667217234908e-016 15.707963267949 -6.3385816067178e-015 4.2968652992441e-016 18.849555921539 16 3.1804853889428e-014 21.991148575129 2.6357729055941e-015 2.2086215016073e-016 25.132741228718 -1.7077268418819e-015 4.7739590058882e-015 28.274333882308 2.8594811445038e-015 4.4391671809344e-015 31.415926535898 2.6645352591004e-015 -4.2713228787239e-015 34.557519189488 4.7143777198289e-015 6.9895314759916e-015 37.699111843078 7.6067318654926e-015 1.9737738769012e-015 40.840704496667 3.1937730979402e-015 -5.8752580480747e-016 43.982297150257 7.4138310417759e-015 -6.8408401677614e-015 47.123889803847 2.6978918638732e-015 -3.5722712911583e-015 50.265482457437 -7.0852611971928e-016 0 53.407075111026 2.6978918638732e-015 3.5722712911584e-015 56.548667764616 2.8692093122619e-015 -3.079842779946e-015 59.690260418206 3.1937730979402e-015 5.8752580480749e-016 62.831853071796 7.6067318654926e-015 -1.9737738769012e-015 65.973445725386 4.714377719829e-015 -6.9895314759916e-015 69.115038378975 -5.3290705182008e-015 -7.2749965773777e-015 72.256631032565 2.8594811445038e-015 -4.4391671809344e-015 75.398223686155 -1.7077268418819e-015 -4.7739590058882e-015 78.539816339745 2.6357729055941e-015 -2.2086215016073e-016 81.681408993335 16 -1.6067876196235e-015 84.823001646924 -6.3385816067178e-015 -4.2968652992443e-016 87.964594300514 -1.9708321324784e-015 2.4667217234907e-016 91.106186954104 -5.7260210049966e-015 -2.9012209847015e-015 94.247779607694 5.7977473552525e-016 -5.9327961475939e-015 97.389372261284 -4.0366941200258e-015 -2.2580154136442e-015 # Please enter the number of seconds to sample cos3t (or 0 to quit): # The sampled values are # Time f(t) 0 1 0 1 -0.98999249660045 0 2 0.96017028665037 0 3 -0.91113026188468 0 4 0.84385395873249 0 5 -0.75968791285882 0 6 0.66031670824408 0 7 -0.54772926022427 0 # Here is the spectrum of the sampled data 0 0.25580102205873 0 0.78539816339745 0.25025942092952 -0.11995966705982 1.5707963267949 0.22336696383805 -0.29082088735032 2.3561944901923 0.062032661605498 -0.71966682387239 3.1415926535898 6.6728808851952 0 3.9269908169872 0.062032661605496 0.71966682387239 4.7123889803847 0.22336696383805 0.29082088735032 5.4977871437821 0.25025942092952 0.11995966705982 # Please enter the number of seconds to sample cos3t (or 0 to quit): # The sampled values are # Time f(t) 0 1 0 1 -0.98999249660045 0 2 0.96017028665037 0 3 -0.91113026188468 0 4 0.84385395873249 0 5 -0.75968791285882 0 6 0.66031670824408 0 7 -0.54772926022427 0 8 0.424179007337 0 9 -0.29213880873384 0 10 0.15425144988758 0 11 -0.013276747223059 0 12 -0.1279636896274 0 13 0.26664293235994 0 14 -0.39998531498835 0 15 0.52532198881773 0 # Here is the spectrum of the sampled data 0 0.79283183988832 0 0.39269908169872 0.79174840974728 -0.16397545286598 0.78539816339745 0.78813057815623 -0.34168807910746 1.1780972450962 0.78058138326771 -0.5519495729563 1.5707963267949 0.76531614664841 -0.82836200531889 1.9634954084936 0.73081275440336 -1.2475491268253 2.3561944901923 0.62844689830759 -2.0498687656719 2.7488935718911 0.00014142323367616 -4.7468456001746 3.1415926535898 6.2368129725832 0 3.5342917352885 0.00014142323366417 4.7468456001746 3.9269908169872 0.62844689830758 2.0498687656719 4.319689898686 0.73081275440335 1.2475491268253 4.7123889803847 0.7653161466484 0.82836200531889 5.1050880620834 0.78058138326771 0.5519495729563 5.4977871437821 0.78813057815623 0.34168807910746 5.8904862254809 0.79174840974727 0.16397545286598 # Please enter the number of seconds to sample cos3t (or 0 to quit): # The sampled values are # Time f(t) 0 1 0 1 -0.98999249660045 0 2 0.96017028665037 0 3 -0.91113026188468 0 4 0.84385395873249 0 5 -0.75968791285882 0 6 0.66031670824408 0 7 -0.54772926022427 0 8 0.424179007337 0 9 -0.29213880873384 0 10 0.15425144988758 0 11 -0.013276747223059 0 12 -0.1279636896274 0 13 0.26664293235994 0 14 -0.39998531498835 0 15 0.52532198881773 0 16 -0.6401443394692 0 17 0.74215419681378 0 18 -0.82930983286315 0 19 0.89986682696919 0 20 -0.95241298041516 0 21 0.98589658158255 0 22 -0.99964745596635 0 23 0.99339037972227 0 24 -0.96725058827388 0 25 0.92175126972475 0 26 -0.85780309324499 0 27 0.77668598202163 0 28 -0.68002349558734 0 29 0.56975033426531 0 30 -0.44807361612917 0 31 0.3174287015197 0 # Here is the spectrum of the sampled data 0 0.62509071055828 0 0.19634954084936 0.62543074010927 -0.058426312483585 0.39269908169872 0.62647781390228 -0.11801498980385 0.58904862254809 0.62831755734981 -0.18002351423359 0.78539816339745 0.6311096827306 -0.24591677880543 0.98174770424681 0.63511922883223 -0.31751931811382 1.1780972450962 0.64077483148147 -0.39724435631176 1.3744467859455 0.64877818260206 -0.48846746869387 1.5707963267949 0.66031874110649 -0.5961815131653 1.7671458676443 0.67752402502457 -0.72823351490383 1.9634954084936 0.7044930435828 -0.8978752301567 2.159844949343 0.74997212731801 -1.1296521038447 2.3561944901923 0.83555089025205 -1.4753137573446 2.5525440310417 1.0280192400659 -2.0685089811502 2.7488935718911 1.6399632769042 -3.4163585177771 2.9452431127404 8.1279936144517 -12.505981804766 3.1415926535898 -6.3447767019852 0 3.3379421944392 8.1279936144517 12.505981804766 3.5342917352885 1.6399632769042 3.4163585177771 3.7306412761379 1.0280192400659 2.0685089811502 3.9269908169872 0.83555089025204 1.4753137573446 4.1233403578366 0.74997212731802 1.1296521038447 4.319689898686 0.70449304358279 0.89787523015669 4.5160394395353 0.67752402502457 0.72823351490382 4.7123889803847 0.66031874110649 0.5961815131653 4.9087385212341 0.64877818260206 0.48846746869387 5.1050880620834 0.64077483148147 0.39724435631176 5.3014376029328 0.63511922883222 0.31751931811382 5.4977871437821 0.6311096827306 0.24591677880543 5.6941366846315 0.62831755734981 0.18002351423359 5.8904862254809 0.62647781390228 0.11801498980385 6.0868357663302 0.62543074010926 0.058426312483579 # Please enter the number of seconds to sample cos3t (or 0 to quit): # The sampled values are # Time f(t) 0 1 0 1 -0.98999249660045 0 2 0.96017028665037 0 3 -0.91113026188468 0 4 0.84385395873249 0 5 -0.75968791285882 0 6 0.66031670824408 0 7 -0.54772926022427 0 8 0.424179007337 0 9 -0.29213880873384 0 10 0.15425144988758 0 11 -0.013276747223059 0 12 -0.1279636896274 0 13 0.26664293235994 0 14 -0.39998531498835 0 15 0.52532198881773 0 16 -0.6401443394692 0 17 0.74215419681378 0 18 -0.82930983286315 0 19 0.89986682696919 0 20 -0.95241298041516 0 21 0.98589658158255 0 22 -0.99964745596635 0 23 0.99339037972227 0 24 -0.96725058827388 0 25 0.92175126972475 0 26 -0.85780309324499 0 27 0.77668598202163 0 28 -0.68002349558734 0 29 0.56975033426531 0 30 -0.44807361612917 0 31 0.3174287015197 0 32 -0.18043044929108 0 33 0.039820880393139 0 34 0.10158570369662 0 35 -0.2409590492362 0 36 0.37550959776701 0 37 -0.50254431914539 0 38 0.61952061255921 0 39 -0.72409719670047 0 40 0.81418097052656 0 41 -0.88796890669186 0 42 0.94398413915231 0 43 -0.98110552264939 0 44 0.99859007243999 0 45 -0.99608783514118 0 46 0.97364889304952 0 47 -0.93172236174352 0 48 0.87114740103234 0 49 -0.79313641916648 0 50 0.69925080647838 0 51 -0.59136968414432 0 52 0.47165229356134 0 53 -0.34249477911591 0 54 0.20648222933781 0 55 -0.066336936335624 0 56 -0.075136090898353 0 57 0.21510526876214 0 58 -0.35076911320913 0 59 0.47941231147032 0 60 -0.59846006905786 0 61 0.70552964429421 0 62 -0.79847803890303 0 63 0.87544489013428 0 # Here is the spectrum of the sampled data 0 0.95485965378366 0 0.098174770424681 0.95482912695046 -0.047767109557206 0.19634954084936 0.95473695041434 -0.095768853343497 0.29452431127404 0.95458131112969 -0.14424453285788 0.39269908169872 0.95435910242451 -0.19344298434091 0.49087385212341 0.95406579007119 -0.24362786163683 0.58904862254809 0.95369521095088 -0.29508358135492 0.68722339297277 0.95323928856681 -0.34812222948055 0.78539816339745 0.95268764207701 -0.4030918078347 0.88357293382213 0.95202705490435 -0.46038631540159 0.98174770424681 0.95124075366787 -0.52045832977588 1.0799224746715 0.95030742553078 -0.58383500329814 1.1780972450962 0.94919986781384 -0.65113875724817 1.2762720155209 0.94788311082579 -0.72311451091067 1.3744467859455 0.9463117713368 -0.80066612770671 1.4726215563702 0.94442625911043 -0.88490607885483 1.5707963267949 0.94214723502475 -0.97722442977169 1.6689710972196 0.93936733740698 -1.0793867059255 1.7671458676443 0.93593852080971 -1.1936760292418 1.8653206380689 0.93165212455564 -1.3231051258903 1.9634954084936 0.92620645653891 -1.4717423979444 2.0616701789183 0.91915203245427 -1.6452317085826 2.159844949343 0.90979483351553 -1.8516569344108 2.2580197197677 0.89701597947739 -2.1030557949552 2.3561944901923 0.8789128042236 -2.4182444665233 2.454369260617 0.85202308085979 -2.8285313769011 2.5525440310417 0.80945850256115 -3.3905739526373 2.6507188014664 0.73570462548725 -4.2199051241011 2.7488935718911 0.58863182754569 -5.5998868309503 2.8470683423158 0.20971975154084 -8.4967036807379 2.9452431127404 -1.75264463009 -20.499043777812 3.0434178831651 5.7908928897857 18.263092467809 3.1415926535898 3.4700122712727 0 3.2397674240145 5.7908928897858 -18.263092467809 3.3379421944392 -1.7526446300901 20.499043777812 3.4361169648638 0.20971975154082 8.4967036807379 3.5342917352885 0.58863182754567 5.5998868309503 3.6324665057132 0.73570462548723 4.2199051241011 3.7306412761379 0.80945850256113 3.3905739526373 3.8288160465626 0.85202308085978 2.8285313769011 3.9269908169872 0.8789128042236 2.4182444665233 4.0251655874119 0.89701597947738 2.1030557949552 4.1233403578366 0.90979483351552 1.8516569344108 4.2215151282613 0.91915203245426 1.6452317085826 4.319689898686 0.92620645653891 1.4717423979444 4.4178646691106 0.93165212455563 1.3231051258903 4.5160394395353 0.9359385208097 1.1936760292418 4.61421420996 0.93936733740698 1.0793867059256 4.7123889803847 0.94214723502475 0.97722442977169 4.8105637508094 0.94442625911042 0.88490607885483 4.9087385212341 0.94631177133679 0.80066612770671 5.0069132916587 0.94788311082579 0.72311451091067 5.1050880620834 0.94919986781384 0.65113875724817 5.2032628325081 0.95030742553077 0.58383500329814 5.3014376029328 0.95124075366787 0.52045832977589 5.3996123733575 0.95202705490435 0.46038631540159 5.4977871437821 0.95268764207701 0.40309180783471 5.5959619142068 0.9532392885668 0.34812222948055 5.6941366846315 0.95369521095087 0.29508358135493 5.7923114550562 0.95406579007119 0.24362786163683 5.8904862254809 0.95435910242451 0.19344298434091 5.9886609959055 0.95458131112968 0.14424453285788 6.0868357663302 0.95473695041433 0.095768853343504 6.1850105367549 0.95482912695048 0.047767109557203 # Please enter the number of seconds to sample cos3t (or 0 to quit): # The sampled values are # Time f(t) 0 1 0 1 -0.98999249660045 0 2 0.96017028665037 0 3 -0.91113026188468 0 4 0.84385395873249 0 5 -0.75968791285882 0 6 0.66031670824408 0 7 -0.54772926022427 0 8 0.424179007337 0 9 -0.29213880873384 0 10 0.15425144988758 0 11 -0.013276747223059 0 12 -0.1279636896274 0 13 0.26664293235994 0 14 -0.39998531498835 0 15 0.52532198881773 0 16 -0.6401443394692 0 17 0.74215419681378 0 18 -0.82930983286315 0 19 0.89986682696919 0 20 -0.95241298041516 0 21 0.98589658158255 0 22 -0.99964745596635 0 23 0.99339037972227 0 24 -0.96725058827388 0 25 0.92175126972475 0 26 -0.85780309324499 0 27 0.77668598202163 0 28 -0.68002349558734 0 29 0.56975033426531 0 30 -0.44807361612917 0 31 0.3174287015197 0 32 -0.18043044929108 0 33 0.039820880393139 0 34 0.10158570369662 0 35 -0.2409590492362 0 36 0.37550959776701 0 37 -0.50254431914539 0 38 0.61952061255921 0 39 -0.72409719670047 0 40 0.81418097052656 0 41 -0.88796890669186 0 42 0.94398413915231 0 43 -0.98110552264939 0 44 0.99859007243999 0 45 -0.99608783514118 0 46 0.97364889304952 0 47 -0.93172236174352 0 48 0.87114740103234 0 49 -0.79313641916648 0 50 0.69925080647838 0 51 -0.59136968414432 0 52 0.47165229356134 0 53 -0.34249477911591 0 54 0.20648222933781 0 55 -0.066336936335624 0 56 -0.075136090898353 0 57 0.21510526876214 0 58 -0.35076911320913 0 59 0.47941231147032 0 60 -0.59846006905786 0 61 0.70552964429421 0 62 -0.79847803890303 0 63 0.87544489013428 0 64 -0.93488970593724 0 65 0.97562269791944 0 66 -0.99682859496943 0 67 0.99808296091356 0 68 -0.97936068960892 0 69 0.94103650744299 0 70 -0.88387747318237 0 71 0.80902762528643 0 72 -0.71798508396971 0 73 0.61257206631568 0 74 -0.4948984145894 0 75 0.36731936773025 0 76 -0.23238842122852 0 77 0.092806218895877 0 78 0.048633500538969 0 79 -0.18909982012986 0 80 0.32578130553515 0 81 -0.45594227589512 0 82 0.57697755850306 0 83 -0.68646463135462 0 84 0.78221210994227 0 85 -0.86230360783108 0 86 0.92513609314626 0 87 -0.96945197326701 0 88 0.99436426555141 0 89 -0.99937435030001 0 90 0.9843819506325 0 91 -0.94968713953017 0 92 0.8959843338731 0 93 -0.82434839568168 0 94 0.73621311874585 0 95 -0.63334253123272 0 96 0.51779558865081 0 97 -0.39188496384151 0 98 0.25813075881645 0 99 -0.11921006489862 0 100 -0.022096619278684 0 101 0.16296103947088 0 102 -0.30056379335008 0 103 0.43215076086182 0 104 -0.55508822795666 0 105 0.66691560039484 0 106 -0.76539465255669 0 107 0.84855432554362 0 108 -0.91473017793538 0 109 0.96259769959641 0 110 -0.99119882175521 0 111 0.99996109275731 0 112 -0.98870913568903 0 113 0.95766815854759 0 114 -0.90745944670153 0 115 0.83908792785983 0 116 -0.75392205843696 0 117 0.65366643388848 0 118 -0.54032767122137 0 119 0.41617424654101 0 120 -0.28369109148653 0 121 0.14552985730709 0 122 -0.0044558420441823 0 123 -0.13670735692754 0 124 0.27513435722086 0 125 -0.40805454148375 0 126 0.53280751132443 0 127 -0.64689633520333 0 # Here is the spectrum of the sampled data 0 0.14951278406297 0 0.049087385212341 0.14952703635069 -0.0031082279715687 0.098174770424681 0.14956986250719 -0.0062202610995952 0.14726215563702 0.14964147113132 -0.0093399233333091 0.19634954084936 0.14974221229668 -0.012471076406499 0.2454369260617 0.14987258121031 -0.015617639231112 0.29452431127404 0.1500332234268 -0.018783607902644 0.34361169648638 0.15022494171281 -0.021973076538979 0.39269908169872 0.15044870468888 -0.025190259189632 0.44178646691106 0.15070565741019 -0.028439513073181 0.49087385212341 0.15099713408837 -0.031725363426113 0.53996123733575 0.15132467320214 -0.035052530278415 0.58904862254809 0.151690035298 -0.038425957510226 0.63813600776043 0.15209522384543 -0.041850844591345 0.68722339297277 0.15254250958516 -0.045332681462527 0.73631077818511 0.15303445889872 -0.048877287087178 0.78539816339745 0.1535739668344 -0.052490852284818 0.83448554860979 0.15416429555488 -0.056179987559372 0.88357293382213 0.1548091191296 -0.05995177675654 0.93266031903447 0.15551257578869 -0.063813837532825 0.98174770424681 0.15627932899309 -0.067774389798247 1.0308350894592 0.15711463896996 -0.071842333514382 1.0799224746715 0.15802444672836 -0.076027337497754 1.1290098598838 0.15901547302753 -0.080339941209476 1.1780972450962 0.16009533534494 -0.084791671920183 1.2271846303085 0.16127268661735 -0.089395180147048 1.2762720155209 0.16255738045164 -0.094164396892892 1.3253594007332 0.16396066868287 -0.099114717013262 1.3744467859455 0.16549543867723 -0.10426321404216 1.4235341711579 0.16717649974732 -0.10962889308521 1.4726215563702 0.16902093061895 -0.11523299002433 1.5217089415826 0.17104850326837 -0.12109932738741 1.5707963267949 0.1732822029335 -0.1272547399755 1.6198837120072 0.17574887009001 -0.13372958692964 1.6689710972196 0.17847999826632 -0.1405583716605 1.7180584824319 0.1815127325718 -0.14778049738842 1.7671458676443 0.184891128947 -0.15544119455922 1.8162332528566 0.18866775518908 -0.16359266799919 1.8653206380689 0.192905744414 -0.17229552764534 1.9144080232813 0.1976814537979 -0.18162058896111 1.9634954084936 0.20308794235557 -0.19165116062959 2.012582793706 0.20923957077892 -0.20248598226716 2.0616701789183 0.21627815927168 -0.21424304069439 2.1107575641306 0.22438134068497 -0.22706459086352 2.159844949343 0.23377405720014 -0.24112385500569 2.2089323345553 0.24474463910022 -0.2566341012156 2.2580197197677 0.25766769538801 -0.27386116247987 2.30710710498 0.273037356171 -0.29314104085133 2.3561944901923 0.29151663976709 -0.31490521666197 2.4052818754047 0.31401264952841 -0.33971796701455 2.454369260617 0.34179449090376 -0.36833301943158 2.5034566458294 0.37668450285257 -0.40178252916805 2.5525440310417 0.42138086308168 -0.44152253419552 2.601631416254 0.48002799860248 -0.48968241974448 2.6507188014664 0.55928434398038 -0.54951852709438 2.6998061866787 0.67046793982827 -0.62630132008541 2.7488935718911 0.83427803361828 -0.72922055656276 2.7979809571034 1.0925264748198 -0.87602012011968 2.8470683423158 1.5427600322428 -1.106445750434 2.8961557275281 2.4719072744349 -1.533518888891 2.9452431127404 5.211948551612 -2.6693975367577 2.9943304979528 57.513686604652 -22.653908749282 3.0434178831651 -8.8928025957544 2.378230642149 3.0925052683775 -5.1935479585291 0.70221909698507 3.1415926535898 -4.5532677978402 0 3.1906800388021 -5.1935479585291 -0.70221909698512 3.2397674240145 -8.8928025957544 -2.3782306421491 3.2888548092268 57.513686604652 22.653908749282 3.3379421944392 5.211948551612 2.6693975367577 3.3870295796515 2.4719072744349 1.533518888891 3.4361169648638 1.5427600322428 1.106445750434 3.4852043500762 1.0925264748198 0.87602012011969 3.5342917352885 0.83427803361828 0.72922055656276 3.5833791205009 0.67046793982828 0.6263013200854 3.6324665057132 0.55928434398038 0.54951852709438 3.6815538909255 0.48002799860251 0.48968241974449 3.7306412761379 0.42138086308168 0.44152253419552 3.7797286613502 0.3766845028526 0.40178252916804 3.8288160465626 0.34179449090375 0.36833301943158 3.8779034317749 0.31401264952842 0.33971796701455 3.9269908169872 0.29151663976709 0.31490521666197 3.9760782021996 0.27303735617101 0.29314104085132 4.0251655874119 0.257667695388 0.27386116247987 4.0742529726243 0.24474463910025 0.2566341012156 4.1233403578366 0.23377405720015 0.24112385500569 4.1724277430489 0.22438134068498 0.22706459086351 4.2215151282613 0.21627815927168 0.21424304069439 4.2706025134736 0.20923957077893 0.20248598226716 4.319689898686 0.20308794235557 0.19165116062959 4.3687772838983 0.1976814537979 0.1816205889611 4.4178646691106 0.192905744414 0.17229552764534 4.466952054323 0.18866775518909 0.16359266799918 4.5160394395353 0.184891128947 0.15544119455921 4.5651268247477 0.18151273257182 0.14778049738838 4.61421420996 0.17847999826632 0.14055837166051 4.6633015951723 0.17574887009001 0.13372958692964 4.7123889803847 0.1732822029335 0.1272547399755 4.761476365597 0.17104850326837 0.12109932738741 4.8105637508094 0.16902093061894 0.11523299002433 4.8596511360217 0.16717649974737 0.1096288930852 4.9087385212341 0.16549543867723 0.10426321404216 4.9578259064464 0.16396066868287 0.099114717013254 5.0069132916587 0.16255738045164 0.094164396892893 5.0560006768711 0.16127268661735 0.089395180147045 5.1050880620834 0.16009533534494 0.084791671920183 5.1541754472958 0.15901547302754 0.080339941209473 5.2032628325081 0.15802444672836 0.076027337497755 5.2523502177204 0.15711463896997 0.071842333514377 5.3014376029328 0.15627932899309 0.067774389798246 5.3505249881451 0.15551257578869 0.063813837532814 5.3996123733575 0.1548091191296 0.059951776756542 5.4486997585698 0.15416429555488 0.056179987559369 5.4977871437821 0.1535739668344 0.052490852284818 5.5468745289945 0.15303445889872 0.048877287087175 5.5959619142068 0.15254250958516 0.045332681462529 5.6450492994192 0.15209522384543 0.041850844591333 5.6941366846315 0.151690035298 0.038425957510225 5.7432240698438 0.15132467320214 0.035052530278409 5.7923114550562 0.15099713408837 0.031725363426114 5.8413988402685 0.15070565741019 0.028439513073179 5.8904862254809 0.15044870468888 0.025190259189631 5.9395736106932 0.15022494171281 0.021973076538976 5.9886609959055 0.1500332234268 0.018783607902644 6.0377483811179 0.14987258121032 0.015617639231103 6.0868357663302 0.14974221229668 0.012471076406493 6.1359231515426 0.1496414711313 0.0093399233332487 6.1850105367549 0.14956986250719 0.0062202610996047 6.2340979219672 0.14952703635069 0.00310822797157 # Please enter the number of seconds to sample cos3t (or 0 to quit): # The sampled values are # Time f(t) # Here is the spectrum of the sampled data Press any key to continue