# Welcome to the Sir George Airy diffraction Pattern Bessel function interpolation problem # Data from the bessel function table given below will be used to interpolate the Airy function, I = I0 [2*J1(r)/r]^2 # r J0(r) J1(r) J2(r) # 0 1 0 0 # 1 0.765198 0.440051 0.114903 # 2 0.223891 0.576725 0.352834 # 3 -0.260052 0.339059 0.486091 # 4 -0.39715 -0.0660433 0.364128 # 5 -0.177597 -0.327579 0.0465651 # 6 0.150645 -0.276684 -0.242873 # 7 0.300079 -0.00468282 -0.301417 # 8 0.171651 0.234636 -0.112992 # 9 -0.0903336 0.245312 0.144847 # 10 -0.245936 0.0434727 0.25463 # The relative intensity (I/I0) as a function of r across the airy diffraction pattern is given by the following data points 0 -1.#IND 0.1 1.23808 0.2 1.18535 0.3 1.13277 0.4 1.08039 0.5 1.02829 0.6 0.976549 0.7 0.92523 0.8 0.874411 0.9 0.824168 1 0.774578 1.1 0.725721 1.2 0.677676 1.3 0.630524 1.4 0.58435 1.5 0.539236 1.6 0.495268 1.7 0.452532 1.8 0.411118 1.9 0.371114 2 0.332612 2.1 0.290973 2.2 0.252294 2.3 0.216683 2.4 0.184179 2.5 0.154765 2.6 0.128387 2.7 0.104954 2.8 0.0843521 2.9 0.0664481 3 0.0510938 3.1 0.0376991 3.2 0.026708 3.3 0.017933 3.4 0.011173 3.5 0.00621842 3.6 0.00285546 3.7 0.000869884 3.8 5.00661e-005 3.9 0.000189762 4 0.00109043 4.1 0.00244874 4.2 0.00414733 4.3 0.00605225 4.4 0.00804626 4.5 0.0100277 4.6 0.0119095 4.7 0.0136184 4.8 0.0150945 4.9 0.01629 5 0.0171693 5.1 0.0172631 5.2 0.0170475 5.3 0.0165545 5.4 0.0158199 5.5 0.014882 5.6 0.0137802 5.7 0.0125537 5.8 0.0112414 5.9 0.00988036 6 0.008506 6.1 0.00700355 6.2 0.00559364 6.3 0.00430804 6.4 0.00317124 6.5 0.00220062 6.6 0.00140678 6.7 0.000794043 6.8 0.000360885 6.9 0.000100579 7 1.79011e-006 7.1 4.55269e-005 7.2 0.000209175 7.3 0.000473936 7.4 0.000819824 7.5 0.00122611 7.6 0.00167178 7.7 0.00213593 7.8 0.00259821 7.9 0.00303922 8 0.00344089 8.1 0.00368125 8.2 0.0038545 8.3 0.00395877 8.4 0.00399426 8.5 0.00396297 8.6 0.00386845 8.7 0.00371559 8.8 0.0035104 8.9 0.00325986 9 0.00297175 9.1 0.00265451 9.2 0.00231715 9.3 0.00196907 9.4 0.00162006 9.5 0.00128011 9.6 0.000959423 9.7 0.00066829 9.8 0.000417056 9.9 0.000216061 10 7.55952e-005 # The relative intensity calculated using a cubic Hermite interpolation algorithm 0 1 0.1 0.997329 0.2 0.9895 0.3 0.976793 0.4 0.959484 0.5 0.937852 0.6 0.912176 0.7 0.882732 0.8 0.849799 0.9 0.813655 1 0.774578 1.1 0.733101 1.2 0.68986 1.3 0.64529 1.4 0.599827 1.5 0.553903 1.6 0.507956 1.7 0.462418 1.8 0.417725 1.9 0.374311 2 0.332612 2.1 0.293082 2.2 0.255929 2.3 0.221208 2.4 0.188977 2.5 0.159293 2.6 0.132214 2.7 0.107798 2.8 0.0861005 2.9 0.0671801 3 0.0510938 3.1 0.0377189 3.2 0.0267565 3.3 0.0179999 3.4 0.0112421 3.5 0.00627646 3.6 0.00289604 3.7 0.000894045 3.8 6.36592e-005 3.9 0.000198061 4 0.00109043 4.1 0.00247066 4.2 0.00414552 4.3 0.00602349 4.4 0.00801307 4.5 0.0100227 4.6 0.011961 4.7 0.0137362 4.8 0.0152571 4.9 0.0164319 5 0.0171693 5.1 0.0174565 5.2 0.017371 5.3 0.0169563 5.4 0.0162563 5.5 0.0153144 5.6 0.0141744 5.7 0.01288 5.8 0.0114746 5.9 0.0100021 6 0.008506 6.1 0.00706037 6.2 0.00571749 6.3 0.00448843 6.4 0.00338427 6.5 0.00241606 6.6 0.00159487 6.7 0.000931787 6.8 0.000437864 6.9 0.000124176 7 1.79011e-006 7.1 4.95928e-005 7.2 0.000223911 7.3 0.000501978 7.4 0.000861025 7.5 0.00127828 7.6 0.00173099 7.7 0.00219637 7.8 0.00265166 7.9 0.00307409 8 0.00344089 8.1 0.00372777 8.2 0.00392859 8.3 0.0040478 8.4 0.00408987 8.5 0.00405924 8.6 0.00396038 8.7 0.00379775 8.8 0.00357579 8.9 0.00329897 9 0.00297175 9.1 0.00261436 9.2 0.00224968 9.3 0.00188609 9.4 0.00153196 9.5 0.00119569 9.6 0.000885658 9.7 0.000610248 9.8 0.000377845 9.9 0.000196833 10 7.55952e-005 # The cross section of the scattering has a zero at : 3.83371